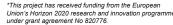
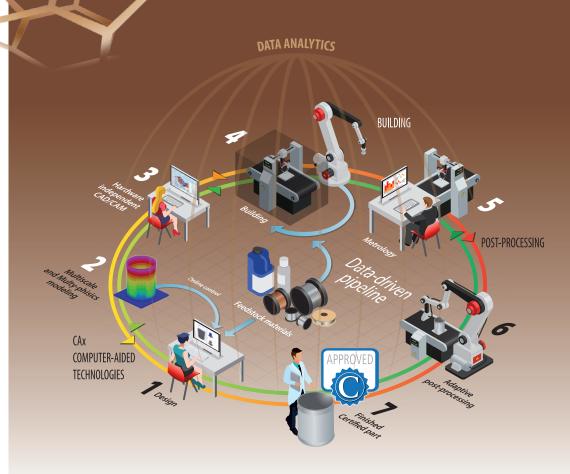


MAIN INNOVATIONS

INTEGRADDE relies on the development of a smart data-driven pipeline addressing the following key innovations:

- · Cybersecured digital thread enabling a holistic system approach for seamless integration of entire AM workflow.
- State-of-the-art and open-source CAx technologies supporting the design, modelling and process planning for additive manufacturing (AM).
- Quality-by-design (QbD) manufacturing strategy combining online quality control systems, selfadaptive systems and minimised consumption of raw materials.
- Data Analytics and machine learning for operational optimisation and efficiency in the product design and AM process simulation by manufacturing of new certified metal parts.
- Hardware-independent CAD/CAM supporting both novel and legacy infrastructure.
- Hybridisation of the AM technologies with previous and subsequent manufacturing technologies.
- Standardization and product certification procedures endorsed by the information flow provided by the digital thread along the product manufacturing chain.





@integraddeproject @Integradde Project

#integraddeproject

Intelligent data-driven pipeline for the manufacturing of certified metal parts through Direct Energy Deposition process

Integrade Digital thread for Addictive Manufacturing Intelligent data-driven pipeline for the manufacturing of certified metal parts through Direct Energy Deposition process.

The major goal of INTEGRADDE is to develop a novel end-to-end solution capable of demonstrating the potential of Directed Energy Deposition (DED) processes in strategic metalworking sectors.

OBJECTIVES Needs targeted by INTEGRADDE

To show the full potential of metal AM in real manufacturing conditions

- Ensuring the manufacturability of a component from the initial product design.
- Integration and interoperability of AM processes into multistage production systems.
- Improve quality of AM products.
- Certification, regulatory and standardisation.

Novel approaches are required, capable to deal with:

- Prediction and minimisation of distortion.
- QbD manufacturing strategy.
- Intelligent data-driven pipeline, enabling bidirectional dataflow.

OPEN PILOT LINES NETWORK

Network of open-pilots offering services to EU industry of consultancy and proof-of-concept of DED technologies for the manufacturing of specific metal components.

- Supporting the adoption of AM in European Industry.
- Providing services and testing facilities for the uptake of AM in EU industry ecosystem (mainly SMEs and MidCaps).
- Demonstrating INTEGRADDE on different equipment schemes and AM processes, ensuring interoperability and usability of INTEGRADDE concept in a generic way.

THIS NETWORK WILL BE EXTENDED TO OTHER RTOS AND TO PREVIOUS **FU INITIATIVES**

+ INFO:

www.integraddeproject.eu

APPLICATION-DRIVEN PILOT LINES

- Hybridisation of WAAM with coexisting manufacturing processes
- Target component: Panel moulding tooling for thermosetting component
- Material: INVAR.

- Manufacturing of new structural support beams and steel connectors for optimised structures by WAAM
- Target component: 3D printed steel structural components
- Material: Steel.

- manufacturing of titanium components for aeronautics by LMD-w
- Target component: Engine case
- Material: Titanium

- Manufacturing of graded components by LMD-p
- Target component: Large parts for the steelmaking process
- Material: Carbides in a metal-alloy matrix

- Hybrid manufacturing of tooling by graded materials (LMD-p)
- Target component: Cutting tools for automotive part manufacturing
- Material: Tool-steel

MAIN TECHNOLOGIES

INTEGRADDE combines research on building strategy optimisation, multi-scale and multi-physics modelling, hardware-independent building process, online control and inline quality assurance for the manufacturing of certified metal parts. In this regard, a self-adaptive control will be adopted focused on the implementation of a non-propagation of defects strategy. Finally, a Data-Analytics system, endorsed with cognitive abilities gaining knowledge from overall process, will assist in the design and manufacturing of new components, addressing mass customisation manufacturing approach.

